



# **Conduit<sup>®</sup> Hardware Guide**



#### Conduit<sup>®</sup> Hardware Guide

Model: MTCDT

Part Number: \$000690 1.6

#### Copyright

This publication may not be reproduced, in whole or in part, without the specific and express prior written permission signed by an executive officer of Multi-Tech Systems, Inc. All rights reserved. **Copyright © 2022 by Multi-Tech Systems, Inc.** 

Multi-Tech Systems, Inc. makes no representations or warranties, whether express, implied or by estoppels, with respect to the content, information, material and recommendations herein and specifically disclaims any implied warranties of merchantability, fitness for any particular purpose and non-infringement.

Multi-Tech Systems, Inc. reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Multi-Tech Systems, Inc. to notify any person or organization of such revisions or changes.

#### Legal Notices

The MultiTech products are not designed, manufactured or intended for use, and should not be used, or sold or re-sold for use, in connection with applications requiring fail-safe performance or in applications where the failure of the products would reasonably be expected to result in personal injury or death, significant property damage, or serious physical or environmental damage. Examples of such use include life support machines or other life preserving medical devices or systems, air traffic control or aircraft navigation or communications systems, control equipment for nuclear facilities, or missile, nuclear, biological or chemical weapons or other military applications ("Restricted Applications"). Use of the products in such Restricted Applications is at the user's sole risk and liability.

MULTITECH DOES NOT WARRANT THAT THE TRANSMISSION OF DATA BY A PRODUCT OVER A CELLULAR COMMUNICATIONS NETWORK WILL BE UNINTERRUPTED, TIMELY, SECURE OR ERROR FREE, NOR DOES MULTITECH WARRANT ANY CONNECTION OR ACCESSIBILITY TO ANY CELLULAR COMMUNICATIONS NETWORK. MULTITECH WILL HAVE NO LIABILITY FOR ANY LOSSES, DAMAGES, OBLIGATIONS, PENALTIES, DEFICIENCIES, LIABILITIES, COSTS OR EXPENSES (INCLUDING WITHOUT LIMITATION REASONABLE ATTORNEYS FEES) RELATED TO TEMPORARY INABILITY TO ACCESS A CELLULAR COMMUNICATIONS NETWORK USING THE PRODUCTS.

The MultiTech products and the final application of the MultiTech products should be thoroughly tested to ensure the functionality of the MultiTech products as used in the final application. The designer, manufacturer and reseller has the sole responsibility of ensuring that any end user product into which the MultiTech product is integrated operates as intended and meets its requirements or the requirements of its direct or indirect customers. MultiTech has no responsibility whatsoever for the integration, configuration, testing, validation, verification, installation, upgrade, support or maintenance of such end user product, or for any liabilities, damages, costs or expenses associated therewith, except to the extent agreed upon in a signed written document. To the extent MultiTech provides any comments or suggested changes related to the application of its products, such comments or suggested changes is performed only as a courtesy and without any representation or warranty whatsoever.

#### Contacting MultiTech

| Country                         | Sales                                    |                                      | Support                                    |                                      |  |
|---------------------------------|------------------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------|--|
| Europe, Middle East,<br>Africa: | sales@multitech.co.uk +(44) 118 959 7774 |                                      | support@multitech.co.uk +(44) 118 959 7774 |                                      |  |
| U.S., Canada, all others:       | sales@multitech.com                      | (800) 328-9717 or (763) 785-<br>3500 | support@multitech.com                      | (800) 972-2439 or (763) 717-<br>5863 |  |

#### Website

www.multitech.com

#### Knowledge Base

For immediate access to support information and resolutions for MultiTech products, visit http://www.multitech.com/kb.go.

#### **Support Portal**

To create an account and submit a support case directly to our technical support team, visit: https://support.multitech.com.

#### Warranty

To read the warranty statement for your product, visit https://www.multitech.com/legal/warranty.

#### **World Headquarters**

Multi-Tech Systems, Inc.

2205 Woodale Drive, Mounds View, MN 55112

# Contents

| Chapter 1 – Product Overview                                            | 5  |
|-------------------------------------------------------------------------|----|
| Introduction                                                            | 5  |
| Product Kit Contents                                                    | 6  |
| Build Options                                                           | 7  |
| Chapter 2 – Specifications                                              | 9  |
| Conduit Specifications                                                  |    |
| Dimensions                                                              | 11 |
| Backpanel Connectors                                                    | 12 |
| LED Descriptions                                                        | 13 |
| Chapter 3 – Power Draw                                                  | 15 |
| MTCDT-H5-246 with Modem and No Accessory Cards Power Draw               | 15 |
| MTCDT-LEU1-246 with Modem and No Accessory Cards                        | 15 |
| MTCDT-LVW2-246 with Modem and No Accessory Cards                        | 16 |
| MTCDT-246A No Modem and No Accessory Cards                              | 16 |
| MTCDT-210 with Modem and no Accessory Cards Power Draw                  | 18 |
| MTCDT-LEU1-210 with Modem and no Accessory Cards Power Draw             |    |
| MTCDT- LAT1-210 with Modem and No Accessory Cards                       | 19 |
| MTCDT-LVW2-210 with Modem and No Accessory Cards                        | 19 |
| MTCDT-210 No Modem and No Accessory Cards                               | 20 |
| MTCDT-LEU1-247 with Bluetooth, Wi-Fi, and No Accessory Cards Power Draw | 21 |
| Chapter 4 – Frequency Information                                       | 22 |
| Frequency Bands for Conduit                                             | 22 |
| Frequency and Power Information for WiFi/Bluetooth                      | 22 |
| Frequency and Power Information for LoRa                                | 22 |
| Max Radio Frequency Power for Conduit                                   | 22 |
| HE910 Telit Transmission Output Power                                   | 22 |
| LE910 Telit Transmission Output Power                                   | 23 |
| Chapter 5 – Setting up and Configuring the Device                       | 24 |
| Install and Connect Conduit Hardware                                    | 24 |
| Installing a Mini SIM Card                                              | 24 |
| Accessory Port (mCard) Interfaces                                       | 25 |
| Installing a Micro SD Card                                              | 26 |
| Installing a Battery                                                    | 26 |
| Connecting to the Debug Interface                                       | 27 |
| Restoring User Defined Settings                                         | 31 |
| Resetting the Device                                                    | 31 |
| Powering Up the Device                                                  | 33 |

| Chapter 6 – Regulatory Information | . 34 |
|------------------------------------|------|
| Conduit Regulatory Information     | 34   |

## **Chapter 1 – Product Overview**

## Introduction

Conduit<sup>®</sup> is a programmable gateway that uses an open Linux development environment to enable machine-tomachine (M2M) connectivity using various wireless interfaces. It also provides an online application store for industrial things as a platform for developers to provision and manage their gateway and associated sensors and devices.

## **Product Kit Contents**

Your Product Kit includes the following (varies with model):

| Device           | 1 - MTCDT-Conduit                                       |  |
|------------------|---------------------------------------------------------|--|
| Power Supply     | 1 - 100-240V 9V-1.7A power supply with removable blades |  |
|                  | 1 - NAM blade/plug                                      |  |
|                  | 1 - EURO blade/plug                                     |  |
|                  | 1 - UK blade/plug                                       |  |
| Cables           | 1 - Micro USB Cable                                     |  |
|                  | 1 - Ethernet Cable RJ45 6-ft.                           |  |
| Antennas*        | 2 - LTE SMA (for Conduit LTE only)                      |  |
| Customer Notices | Quick Start*                                            |  |
|                  | Registration Card                                       |  |
| Feet             | 4 - Clear Adhesive Feet                                 |  |
| Additional       | 1 - Promotional screwdriver                             |  |

Note: \*HEPTA or LTE antennas are not included with MTCDT-246 or 247A/L (No Radio versions).

## **Build Options**

| Product                  | Description                                                                                                         | Region |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|--------|
| MTCDT-246L-US-EU-GB      | mLinux Programmable Gateway using GNSS<br>w/US/EU/UK Accessory Kit                                                  | Global |
| MTCDT-246A-US-EU-GB      | mPower Gateway using GNSS w/US/EU/UK Accessory<br>Kit                                                               | Global |
| MTCDT-246A-915-US-EU-GB  | mPower Programmable Gateway 8-channel, 915 MHz,<br>using MTAC-LORA-H-915 mCard, GNSS, and US/EU/UK<br>Accessory Kit | NA     |
| MTCDT-246A-868-EU-GB     | mPower Programmable Gateway 8-channel, 868 MHz,<br>using MTAC-LORA-H-868 mCard, GNSS, and US/EU/UK<br>Accessory Kit | EU/UK  |
| MTCDT-246A-923-JP        | mPower Programmable Gateway 8-channel, 923 MHz,<br>using MTAC-LORA-H-923-JP mCard, GNSS, and Japan<br>Accessory Kit | Japan  |
| MTCDT-H5-246L-US-EU-GB   | HSPA+ mLinux Programmable Gateway using GNSS<br>w/US/EU/UK Acc Kit                                                  | Global |
| MTCDT-H5-246A-US-EU-GB   | HSPA+ mPower Gateway using GNSS w/US/EU/UK Acc<br>Kit                                                               | Global |
| MTCDT-LEU1-246L-US-EU-GB | Conduit LTE mLinux Programmable Gateway using<br>GNSS w/US/EU/UK Acc Kit                                            | Global |
| MTCDT-LEU1-246A-US-EU-GB | Conduit LTE mPower Programmable Gateway using<br>GNSS w/US/EU/UK Acc Kit                                            | Global |
| MTCDT-LAT1-246L-US       | Conduit LTE mLinux Programmable Gateway using GNSS w/US/EU/UK Acc Kit                                               | NA     |
| MTCDT-LAT1-246A-US       | Conduit LTE mPower Programmable Gateway using<br>GNSS w/US/EU/UK Acc Kit                                            | NA     |
| MTCDT-LVW2-246L-US       | Conduit LTE mLinux Programmable Gateway using<br>GNSS w/US/EU/UK Acc Kit                                            | NA     |
| MTCDT-LVW2-246A-US       | Conduit LTE mPower Programmable Gateway using<br>GNSS w/US/EU/UK Acc Kit                                            | NA     |
| MTCDT-LDC3-246A-JP       | Conduit 4G LTE Cat 1 mPower Programmable Gateway using GNSS w/Japan Acc Kit                                         | Japan  |
| MTCDT-LDC3-246L-JP       | Conduit 4G LTE Cat 1 mLinux Programmable Gateway<br>using GNSS w/Japan Acc Kit                                      | Japan  |
| MTCDT-LDC3-246A-923-JP   | Conduit 4G LTE Cat 1 mPower Programmable Gateway using GNSS w/Japan Acc Kit (AS 923 Channel Plan)                   | Japan  |
| MTCDT-LDC3-246L-923-JP   | Conduit 4G LTE Cat 1 mLinux Programmable Gateway using GNSS w/Japan Acc Kit (AS 923 Channel Plan)                   | Japan  |
| MTCDT-247L-US-EU-GB      | mLinux Programmable Gateway using GNSS and WiFi/BT w/US/EU/UK Accessory Kit                                         | Global |

| Product                  | Description                                                                       | Region |
|--------------------------|-----------------------------------------------------------------------------------|--------|
| MTCDT-247A-US-EU-GB      | mPower Programmable Gateway using GNSS and<br>WiFi/BT w/US/EU/UK Accessory Kit    | Global |
| MTCDT-H5-247L-US-EU-GB   | HSPA+ mLinux Programmable Gateway using GNSS and WiFi/BT w/US/EU/UK Acc Kit       | Global |
| MTCDT-H5-247A-US-EU-GB   | HSPA+ mPower Programmable Gateway using GNSS<br>and WiFi/BT w/US/EU/UK Acc Kit    | Global |
| MTCDT-LEU1-247L-US-EU-GB | Conduit LTE mLinux Programmable Gateway using GNSS and WiFi/BT w/US/EU/UK Acc Kit | Global |
| MTCDT-LEU1-247A-US-EU-GB | Conduit LTE mPower Programmable Gateway using GNSS and WiFi/BT w/US/EU/UK Acc Kit | Global |
| MTCDT-LAT1-247L-US       | Conduit LTE mLinux Programmable Gateway using GNSS and WiFi/BT w/US/EU/UK Acc Kit | NA     |
| MTCDT-LAT1-247A-US       | Conduit LTE mPower Programmable Gateway using GNSS and WiFi/BT w/US/EU/UK Acc Kit | NA     |
| MTCDT-LVW2-247L-US       | Conduit LTE mLinux Programmable Gateway using GNSS and WiFi/BT w/US/EU/UK Acc Kit | NA     |
| MTCDT-LVW2-247A-US       | Conduit LTE mPower Programmable Gateway using GNSS and WiFi/BT w/US/EU/UK Acc Kit | NA     |

#### Note:

- The complete product code may end in .Rx. For example, MTCDT-H5.Rx, where R is the revision and the x is the revision number.
- 210 models use pervious hardware and software (not upgraded to latest version).

## **Chapter 2 – Specifications**

## **Conduit Specifications**

| Category               | Description                                               |
|------------------------|-----------------------------------------------------------|
| Physical Description   |                                                           |
| Dimensions             | See the Conduit Demensions Drawing                        |
| Weight                 | 15.6 oz. (442.25 grams) with no accessory cards installed |
| Connectors             |                                                           |
| Connectors             | 1 USB device micro Type B debug port (behind nameplate)   |
|                        | 1 RJ-45 Ethernet port                                     |
|                        | 1 USB micro port                                          |
|                        | 2 cellular antenna connectors                             |
|                        | 1 Wi-Fi/Bluetooth connector                               |
|                        | 1 GPS antenna connector                                   |
| Power Requirements     |                                                           |
| Input Voltage          | 9-32 Volts                                                |
| Power Draw             | See Conduit Power Draw                                    |
| Environment            |                                                           |
| Operating Environment  | -30° to +70° C <sup>1</sup>                               |
| Storage Environment    | -40° to +85° C                                            |
| Relative Humidity      | 20 to 90% non-condensing                                  |
| Certifications         |                                                           |
| Radio & EMC Compliance | EN 55022:2010                                             |
|                        | EN 301 489                                                |
|                        | FCC Part 15 Class B                                       |
|                        | IC Class B                                                |
| Safety Compliance      | UL/cUL 60950-1 2nd Ed.                                    |
|                        | IEC 60950-1 2nd Ed. Am. 1 and Am. 2                       |
| Telecom Approvals      | Based on radio installed                                  |

<sup>1</sup>UL Listed @ 40° C, limited by AC power supply. UL Recognized @ 65° C for Conduit LTE devices within IP67 enclosure or when used with the fused DC power cable, part number FPC-532-DC.

Installation in outdoor locations or ambient above 70° C has not been evaluated by UL. UL Certification does not apply or extend to use in outdoor applications.

Optional power must be UL Listed ITE power supply marked LPS or Class 2 rated 12 VDC, 5A. Certification does not apply or extend to Voltages outside certified range, and has not been evaluated by UL for operating voltages beyond tested range.

## **Dimensions**



DIMENSIONS IN In [mm]

## **Backpanel Connectors**

| Label      | Description                                                                                                                                                                                                                                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CELL, AUX  | Cellular antenna inputs.<br>H5: CELL - Primary.<br>AUX - Diversity.                                                                                                                                                                                                                                        |
| AP1, AP2   | Slots for MultiTech accessory cards. You can install an accessory card in either slot. Both slots can be occupied at one time. An exception is an SDIO (Secure Digital Input/Output) card, which can be used only in the AP1 slot.                                                                         |
| USB DEVICE | User-defined, high-speed 480 Mbps, standard USB 2.0 Micro B connector. Use this port to connect the Conduit to a computer or another device. By default, this port is a serial port terminal interface, but you can program it to act as another device such as a mass storage device or an Ethernet port. |
| E-NET      | RJ-45 receptacle for standard Ethernet 10/100 Base-T.                                                                                                                                                                                                                                                      |
|            | <b>Caution:</b> Ethernet ports and command ports are not designed to be connected to a public telecommunication network or used outside the building or campus.                                                                                                                                            |
| USB HOST   | High-speed, standard USB 2.0 Type A connector. 500mA maximum current draw. You can plug into the Host port a device such as a flash drive, camera, or printer if the Linux kernel has the appropriate driver.                                                                                              |
| Power      | 9-32 Vdc power receptacle for provided power cord.                                                                                                                                                                                                                                                         |



## **LED Descriptions**

Conduit mLinux Model Front Panel



Conduit mPower Model Front Panel



| Label   | Name           | Description                                                                                       |
|---------|----------------|---------------------------------------------------------------------------------------------------|
| PWR     | Power          | Solid (constant) green if unit is on indicating that DC power is present.                         |
| STATUS  | Power Status   | Default condition: LED blinks when mLinux is fully loaded.                                        |
| LS      | Link Status    | Varies with radio model.                                                                          |
| A-B-C-D |                | These 4 LEDs are user-specified. Present on the Conduit mLinux model only.                        |
| CD      | Carrier Detect | This LED is on when a cellular data connection is made. Present on the Conduit mPower model only. |

| Label  | Name            | Description                                                                                         |
|--------|-----------------|-----------------------------------------------------------------------------------------------------|
| Signal | Signal Strength | These 3 LEDs display the strength of the cellular signal. Present on the Conduit mPower model only. |

If a cellular radio is installed, the typical LS (Link Status) LED behavior is the following:

- OFF No power to the cellular radio
- Continuously Lit Not registered
- Slow Blink (-0.2Hz) Registered or connected

On the back of the Conduit, the RJ-45 Ethernet LEDs (located at the bottom of the connector) are defined as follows:

- Orange LED (lower-left) indicated activity/link. Blinks when there is transmit and receive on the Ethernet link. It shows a steady light when there is a valid Ethernet connection.
- Green LED (lower-right) indicates link speed. Lit when Ethernet is linked at 100Mbps. If not lit, Ethernet is linked at 10 Mbps.

## **Chapter 3 – Power Draw**

### MTCDT-H5-246 with Modem and No Accessory Cards Power Draw

| Radio Protocol | Idle Cellular<br>Connection no<br>data (Amps) | Average Tx<br>Current at Max<br>Power passing<br>data (Amps) | Peak Tx Current<br>(Amps) <sup>1</sup> | Total Inrush<br>Charge (mC) <sup>2</sup> | Total Inrush<br>Charge Duration<br>(mS) |  |
|----------------|-----------------------------------------------|--------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|--|
| 9.0 Volts      |                                               |                                                              |                                        |                                          |                                         |  |
| GSM 850 MHz    | 0.182                                         | 0.342                                                        | 1.12 (pulse avg.)                      | 5.18                                     | 9.60                                    |  |
| HSDPA          | 0.208                                         | 0.472                                                        | 0.548                                  | 5.18                                     | 9.60                                    |  |
| 12.0 Volts     |                                               |                                                              |                                        |                                          |                                         |  |
| GSM 850 MHz    | 0.148                                         | 0.268                                                        | 0.826                                  | 4.59                                     | 8.58                                    |  |
| HSDPA          | 0.151                                         | 0.391                                                        | 0.460                                  | 4.59                                     | 8.58                                    |  |
| 24.0 volts     |                                               |                                                              |                                        |                                          |                                         |  |
| GSM 850 MHz    | 0.099                                         | 0.161                                                        | 0.455                                  | 3.68                                     | 17.55                                   |  |
| HSDPA          | 0.101                                         | 0.214                                                        | 0.288                                  | 3.68                                     | 17.55                                   |  |

<sup>1</sup>**Peak Tx Current**: The average peak current during a GSM850 transmission burst period or HSDPA connection. The transmission burst duration for GSM850 can vary, depending on what transmission scheme is being deployed (GPRS Class 8, Class 10, GSM, etc.).

<sup>2</sup>Total Inrush Charge: The total inrush charge at power on expressed in Millicoulombs (mC).

Note:

Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into the power source when determining product load.

### MTCDT-LEU1-246 with Modem and No Accessory Cards

| Radio Protocol | Idle Cellular<br>Connection no<br>data (Amps) | Average Tx<br>Current at Max<br>Power Passing<br>Data (Amps) <sup>1</sup> | Peak Tx Current<br>(Amps) <sup>2</sup> | Total Inrush<br>Charge (mC) <sup>3</sup> | Total Inrush<br>Charge Duration<br>(mS) |
|----------------|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|
| 9.0 Volts      |                                               |                                                                           |                                        |                                          |                                         |
| EGSM 900 MHz   | 0.178                                         | 0.363                                                                     | 1.10                                   | 4.87                                     | 9.7                                     |
| LTE            | 0.192                                         | 0.552                                                                     | 0.632                                  | 4.87                                     | 9.7                                     |
| 12.0 Volts     |                                               |                                                                           |                                        |                                          |                                         |
| EGSM 900 MHz   | 0.140                                         | 0.290                                                                     | 0.835                                  | 4.2                                      | 8.5                                     |
| LTE            | 0.151                                         | 0.440                                                                     | 0.512                                  | 4.2                                      | 8.5                                     |
| 24.0 Volts     |                                               |                                                                           |                                        |                                          |                                         |
| EGSM 900 MHz   | 0.093                                         | 0.170                                                                     | 0.441                                  | 3.65                                     | 17.9                                    |

| Radio Protocol | Idle Cellular<br>Connection no<br>data (Amps) | Average Tx<br>Current at Max<br>Power Passing<br>Data (Amps) <sup>1</sup> | Peak Tx Current<br>(Amps) <sup>2</sup> | Total Inrush<br>Charge (mC) <sup>3</sup> | Total Inrush<br>Charge Duration<br>(mS) |
|----------------|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|
| LTE            | 0.102                                         | 0.249                                                                     | 0.316                                  | 3.65                                     | 17.9                                    |

<sup>1</sup>**Max Power**: The continuous current during maximum data rate with the radio transmitter at maximum power.

<sup>2</sup>**Peak Tx Current**: The average peak current during an EGSM900 transmission burst period or LTE connection. The transmission burst duration for EGSM900 can vary, depending on what transmission scheme is being deployed (GPRS Class 8, Class 10, GSM, etc.).

<sup>3</sup>Total Inrush Charge: The total inrush charge at power on expressed in Millicoulombs (mC).

Note:

Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into the power source when determining product load.

#### MTCDT-LVW2-246 with Modem and No Accessory Cards

| Radio Protocol | Idle Cellular<br>Connectionno<br>data (Amps) | Average Tx<br>Current at Max<br>Power Passing<br>Data (Amps) <sup>1</sup> | Peak Tx Current<br>(Amps) <sup>2</sup> | Total Inrush<br>Charge (mC)³ | Total Inrush<br>Charge Duration<br>(mS) |  |
|----------------|----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|------------------------------|-----------------------------------------|--|
| 9.0 Volts      |                                              |                                                                           |                                        |                              |                                         |  |
| LTE            | 0.175                                        | 0.482                                                                     | 0.556                                  | 4.87                         | 9.7                                     |  |
| 12.0 Volts     |                                              |                                                                           |                                        |                              |                                         |  |
| LTE            | 0.148                                        | 0.375                                                                     | 0.499                                  | 4.2                          | 8.5                                     |  |
| 24.0 Volts     |                                              |                                                                           |                                        |                              |                                         |  |
| LTE            | 0.100                                        | 0.214                                                                     | 0.303                                  | 3.65                         | 17.9                                    |  |

<sup>1</sup>**Max Power**: The continuous current during maximum data rate with the radio transmitter at maximum power.

<sup>2</sup>**Peak Tx Current**: The average peak current during LTE connection.

<sup>3</sup>Total Inrush Charge: The total inrush charge at power on expressed in Millicoulombs (mC).

Note:

Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into the power source when determining product load.

#### MTCDT-246A No Modem and No Accessory Cards

| Voltage    | No Connections<br>(Amps) <sup>1</sup> | Ethernet<br>Connected only<br>(Amps) <sup>2</sup> | Maximum<br>Current (Amps) <sup>3</sup> | Total Inrush<br>Charge (mC)⁴ | Total Inrush<br>Charge Duration<br>(mS) |
|------------|---------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------|-----------------------------------------|
| 9.0 Volts  | 0.147                                 | 0.155                                             | 0.222                                  | 3.92                         | 9.7                                     |
| 12.0 Volts | 0.124                                 | 0.128                                             | 0.175                                  | 3.26                         | 8.54                                    |

| Voltage    | No Connections<br>(Amps) <sup>1</sup> | Ethernet<br>Connected only<br>(Amps) <sup>2</sup> | Maximum<br>Current (Amps) <sup>3</sup> | Total Inrush<br>Charge (mC)⁴ | Total Inrush<br>Charge Duration<br>(mS) |
|------------|---------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------|-----------------------------------------|
| 24.0 Volts | 0.081                                 | 0.086                                             | 0.114                                  | 2.48                         | 14.6                                    |

<sup>1</sup>**No Connections**: Typical measure performed with the unit powered up only–no connections to the device.

<sup>2</sup>Ethernet Connected Only: Typical power with Ethernet measured and the device attached to PC with Ethernet cable only.

<sup>3</sup>**Maximum Current:** Maximum current measured with Ethernet connected, SD Card, and USB Device actively running read/write script, USB Debug and Host active running find/command.

<sup>4</sup>Total Inrush Charge: The total inrush charge at power on expressed in Millicoulombs (mC).

Note:

Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into the power source when determining product load.

## MTCDT-210 with Modem and no Accessory Cards Power Draw

| Radio Protocol | Idle Cellular<br>Connectionno<br>data (Amps) | Average Tx<br>Current at Max<br>Power passing<br>data (Amps) | Peak Tx Current<br>(Amps) <sup>1</sup> | Total Inrush<br>Charge (mC) <sup>2</sup> | Total Inrush<br>Charge Duration<br>(mS) |
|----------------|----------------------------------------------|--------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|
| 9.0 Volts      |                                              |                                                              |                                        |                                          |                                         |
| GSM 850 MHz    | 0.200                                        | 0.400                                                        | 1.200 (pulse avg.)                     | 5.21                                     | 8.27                                    |
| HSDPA          | 0.198                                        | 0.525                                                        | 0.616                                  | 5.21                                     | 8.27                                    |
| 12.0 Volts     |                                              |                                                              |                                        |                                          |                                         |
| GSM 850 MHz    | 0.166                                        | 0.323                                                        | 0.884                                  | 4.81                                     | 8.26                                    |
| HSDPA          | 0.168                                        | 0.453                                                        | 0.540                                  | 4.81                                     | 8.26                                    |
| 24.0 Volts     |                                              |                                                              |                                        |                                          |                                         |
| GSM 850 MHz    | 0.099                                        | 0.175                                                        | 0.490                                  | 3.99                                     | 20.0                                    |
| HSDPA          | 0.101                                        | 0.245                                                        | 0.320                                  | 3.99                                     | 20.0                                    |

<sup>1</sup>**Peak Tx Current**: The average peak current during a GSM 850 transmission burst period or HSDPA connection. The transmission burst duration for GSM 850 can very, depending on what transmission scheme is being deployed (GPRS Class 8, Class 10, GSM, etc.).

<sup>2</sup>Total Inrush Charge: The total inrush charge at power on expressed in Millicoulombs (mC).

**Note:** Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into the power source when determining product load.

### MTCDT-LEU1-210 with Modem and no Accessory Cards Power Draw

| Radio Protocol | Idle cellular<br>Connection no<br>data (Amps) | Average Tx<br>Current at Max<br>Power Passing<br>Data (Amps) <sup>1</sup> | Peak Tx Current<br>(Amps) <sup>2</sup> | Total Inrush<br>Charge (mC) <sup>3</sup> | Total Inrush<br>Charge Duration<br>(mS) |
|----------------|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|
| 9.0 Volts      |                                               |                                                                           |                                        |                                          |                                         |
| EGSM 900 MHz   | 0.242                                         | 0.435                                                                     | 1.33                                   | 5.21                                     | 8.27                                    |
| LTE            | 0.256                                         | 0.615                                                                     | 0.704                                  | 5.21                                     | 8.27                                    |
| 12.0           |                                               |                                                                           |                                        |                                          |                                         |
| EGSM 900 MHz   | 0.192                                         | 0.340                                                                     | 0.931                                  | 4.81                                     | 8.26                                    |
| LTE            | 0.203                                         | 0.468                                                                     | 0.512                                  | 4.81                                     | 8.26                                    |
| 24.0 Volts     |                                               |                                                                           |                                        |                                          |                                         |
| EGSM 900 MHz   | 0.104                                         | 0.189                                                                     | 0.493                                  | 3.99                                     | 20.0                                    |
| LTE            | 0.115                                         | 0.245                                                                     | 0.312                                  | 3.99                                     | 20.0                                    |

<sup>1</sup>**Max Power**: The continuous current during maximum data rate with the radio transmitter at maximum power.

<sup>2</sup>**Peak Tx Current**: The average peak current during an EGSM 900 transmission burst period or LTE connection. The transmission burst duration for EGSM 900 can very, depending on what transmission scheme is being deployed (GPRS Class 8, Class 10, GSM, etc.).

<sup>3</sup>Total Inrush Charge: The total inrush charge at power on expressed in Millicoulombs (mC).

**Note:** Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into the power source when determining product load.

| Radio Protocol | Idle Cellular<br>Connection no<br>data (Amps) | Average Tx<br>Current at Max<br>Power Passing<br>Data (Amps) <sup>1</sup> | Peak Tx Current<br>(Amps) <sup>2</sup> | Total Inrush<br>Charge (mC) <sup>3</sup> | Total Inrush<br>Charge Duration<br>(mS) |
|----------------|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|
| 9.0 Volts      |                                               |                                                                           |                                        |                                          |                                         |
| GSM 850 MHz    | 0.200                                         | 0.436                                                                     | 1.20                                   | 6.4                                      | 8.50                                    |
| LTE            | 0.201                                         | 0.525                                                                     | 0.588                                  | 6.4                                      | 8.50                                    |
| 12.0 Volts     |                                               |                                                                           |                                        |                                          |                                         |
| GSM 850 MHz    | 0.163                                         | 0.335                                                                     | 0.915                                  | 5.18                                     | 8.2                                     |
| LTE            | 0.164                                         | 0.410                                                                     | 0.480                                  | 5.18                                     | 8.2                                     |
| 24.0 Volts     |                                               |                                                                           |                                        |                                          |                                         |
| GSM 850 MHz    | 0.094                                         | 0.186                                                                     | 0.440                                  | 4.12                                     | 11.8                                    |
| LTE            | 0.095                                         | 0.225                                                                     | 0.300                                  | 4.12                                     | 11.8                                    |

#### MTCDT- LAT1-210 with Modem and No Accessory Cards

<sup>1</sup>**Max Power**: The continuous current during maximum data rate with the radio transmitter at maximum power.

<sup>2</sup>**Peak Tx Current**: The average peak current during an GSM 850 transmission burst period or LTE connection. The transmission burst duration for GSM 8502 can very, depending on what transmission scheme is being deployed (GPRS Class 8, Class 10, GSM, stc.).

<sup>3</sup>Total Inrush Charge: The total inrush charge at power on expressed in Millicoulombs (mC).

**Note:** Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into the power source when determining product load.

#### MTCDT-LVW2-210 with Modem and No Accessory Cards

| Radio Protocol | Idle Cellular<br>Connection no<br>data (Amps) | Average Tx<br>Current at Max<br>Power Passing<br>Data (Amps) <sup>1</sup> | Peak Tx Current<br>(Amps) <sup>2</sup> | Total Inrush<br>Charge (mC) <sup>3</sup> | Total Inrush<br>Charge Duration<br>(mS) |
|----------------|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|
| 9.0 Volts      |                                               |                                                                           |                                        |                                          |                                         |
| LTE            | 0.205                                         | 0.550                                                                     | 0.620                                  | 6.28                                     | 8.28                                    |
| 12.0 Volts     |                                               |                                                                           |                                        |                                          |                                         |
| LTE            | 0.161                                         | 0.414                                                                     | 0.500                                  | 5.15                                     | 8.43                                    |

| Radio Protocol | Idle Cellular<br>Connection no<br>data (Amps) | Average Tx<br>Current at Max<br>Power Passing<br>Data (Amps) <sup>1</sup> | Peak Tx Current<br>(Amps) <sup>2</sup> | Total Inrush<br>Charge (mC) <sup>3</sup> | Total Inrush<br>Charge Duration<br>(mS) |
|----------------|-----------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|
| 24.0 Volts     |                                               |                                                                           |                                        |                                          |                                         |
| LTE            | 0.096                                         | 0.227                                                                     | 0.300                                  | 2.75                                     | 7.43                                    |

<sup>1</sup>**Max Power**: The continuous current during maximum data rate with the radio transmitter at maximum power.

<sup>2</sup>**Peak Tx Current**: The average peak current during LTE connection.

<sup>3</sup>Total Inrush Charge: The total inrush charge at power on expressed in Millicoulombs (mC).

**Note:** Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into the power source when determining product load.

#### MTCDT-210 No Modem and No Accessory Cards

| Voltage    | No Connections<br>(Amps) <sup>1</sup> | Ethernet<br>Connected only<br>(Amps) <sup>2</sup> | Maximum<br>Current (Amps) <sup>3</sup> | Total Inrush<br>Charge (mC)⁴ | Total Inrush<br>Charge Duration<br>(mS) |
|------------|---------------------------------------|---------------------------------------------------|----------------------------------------|------------------------------|-----------------------------------------|
| 9.0 Volts  | 0.151                                 | 0.168                                             | 0.265                                  | 2.37                         | 1.05                                    |
| 12.0 Volts | 0.130                                 | 0.139                                             | 0.204                                  | 3.4                          | 8.24                                    |
| 24.0 Volts | 0.080                                 | 0.086                                             | 0.114                                  | 2.8                          | 22.7                                    |

<sup>1</sup>**No Connections**: Typical measure performed with the unit powered up only–no connections to the device.

<sup>2</sup>Ethernet Connected Only: Typical power with Ethernet measured and the device attached to PC with Ethernet cable only.

<sup>3</sup>**Maximum Current**: Maximum current measured with Ethernet connected, SD Card, and USB Device actively running read/write script, USB Debug and Host active running find/command.

<sup>4</sup>**Total Inrush Charge**: The total inrush charge at power on expressed in Millicoulombs (mC).

**Note:** Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into the power source when determining product load

### MTCDT-LEU1-247 with Bluetooth, Wi-Fi, and No Accessory Cards Power Draw

| Radio Protocol | Idle Cellular Call<br>Box Connection<br>No Data | Average<br>Measured<br>Current at Max<br>Power (Wi-Fi<br>WAN Active<br>Internet<br>Upload/Downloa<br>d) <sup>1</sup> | TX Pulse (AVG)<br>Amplitude<br>Current for<br>GSM850 or Peak<br>Current for<br>HSDPA/LTE <sup>2</sup> | Total Inrush<br>Charge<br>Measured <sup>3</sup> | Total Inrush<br>Charge Duration<br>During Powerup<br>(Inrush Duration) |
|----------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------|
| 9.0 Volts      |                                                 |                                                                                                                      |                                                                                                       |                                                 |                                                                        |
| EGSM 900 MHz   | 283 mA                                          | 635 mA                                                                                                               | 1.30 Amps                                                                                             | 4.87 mC                                         | 9.7 mS                                                                 |
| LTE            | 296 mA                                          | 850 mA                                                                                                               | 952 mA                                                                                                | 4.87 mC                                         | 9.7 mS                                                                 |
| 12.0 Volts     |                                                 |                                                                                                                      |                                                                                                       |                                                 |                                                                        |
| EGSM 900 MHz   | 220 mA                                          | 490 mA                                                                                                               | 928 mA                                                                                                | 4.2 mC                                          | 8.5 mS                                                                 |
| LTE            | 232 mA                                          | 675 mA                                                                                                               | 748 mA                                                                                                | 4.2 mC                                          | 8.5 mS                                                                 |
| 24.0 Volts     |                                                 |                                                                                                                      |                                                                                                       |                                                 |                                                                        |
| EGSM 900 MHz   | 124 mA                                          | 258 mA                                                                                                               | 385 mA                                                                                                | 3.65 mC                                         | 17.9 mS                                                                |
| LTE            | 131 mA                                          | 343 mA                                                                                                               | 420 mA                                                                                                | 3.65 mC                                         | 17.9 mS                                                                |

<sup>1</sup>**Maximum Power**: The continuous current during maximum data rate with the radio transmitter at maximum power.

<sup>2</sup>**Peak Tx Current**: The average peak current during a GSM850 transmission burst period or HSDPA connection. The transmission duration for GSM850 can vary, depending on what transmission scheme is being deployed (GPRS Class 8, Class 10, GSM, etc.).

#### <sup>3</sup>**Total Inrush Charge**: The total inrush charge at power.

**Note:** Multi-Tech Systems, Inc. recommends that you incorporate a 10% buffer into the power source when determining product load.

## **Chapter 4 – Frequency Information**

## **Frequency Bands for Conduit**

| Cellular Radio | Frequencies                            |
|----------------|----------------------------------------|
| LE910-Eug      | 2G 900/1800, 3G 850/900/2100, LTE/FDD  |
| LEU1           | 800/1800/2600                          |
| LE910-NAG      | 2G 850/1900, WCDMA 850/1900, LTE/FDD   |
| LAT1           | 700/850, AWS 1700/1900                 |
| LE910-SVG      | 700                                    |
| LVW2           | AWS 1700                               |
| HE910-D        | GSM 850/900, DCS 1800, PCS 1900, WCDMA |
| H5             | 800/850/900, AWS 1700/1900/2100        |

## **Frequency and Power Information for WiFi/Bluetooth**

| Operating Frequency                               | RF Output Power |
|---------------------------------------------------|-----------------|
| 802.11b: 2400 MHz – 2483.5 MHz                    | 19.1 dBm        |
| 802.11g: 2400 MHz – 2483.5 MHz                    | 19.9 dBm        |
| 802.11n: 2400 MHz – 2483.5 MHz                    | 19.9 dBm        |
| 802.11a: 5150 MHz – 5350 MHz, 5470 MHz – 5725 MHz | 13.5 dBm        |
| 802.11n: 5150 MHz – 5350 MHz, 5470 MHz – 5725 MHz | 13.6 dBm        |
| BT/BLE: 2400 MHz – 2483.5 MHz                     | 10.1 dBm        |

## **Frequency and Power Information for LoRa**

| Operating Frequency                          | RF Output Power                             |
|----------------------------------------------|---------------------------------------------|
| EN 300 220-2: 869.525 MHz (Europe)           | 27 dBm Max allowed ERP power - high channel |
| EN 300 220-2: 867.1 MHz – 868.8 MHz (Europe) | 14 dBm Max allowed ERP power - low channels |

## **Max Radio Frequency Power for Conduit**

### **HE910 Telit Transmission Output Power**

| Band              | Power Class |
|-------------------|-------------|
| GSM 850/900       | 4 (2W)      |
| DCS 1800/PCS 1900 | 1 (1W)      |

| Band                                   | Power Class     |
|----------------------------------------|-----------------|
| EDGE, 850/900 MHz                      | E2 (0.5W)       |
| EDGE, 1800/1900 MHz                    | Class E2 (0.4W) |
| WCDMA 850/900, AWS 1700, 1900/2100 MHz | Class 3 (0.25W) |

### LE910 Telit Transmission Output Power

| Band                                      | Power Class     |
|-------------------------------------------|-----------------|
| GSM 850/900                               | 4 (2W)          |
| DCS 1800/PCS 1900                         | 1 (1W)          |
| EDGE, 850/900 MHz                         | E2 (0.5W)       |
| EDGE, 1800/1900 MHz                       | Class E2 (0.4W) |
| WCDMA FDD B1, B2, B4, B5, B8              | Class 3 (0.25W) |
| LTE FDD B2, B3, B4, B5, B7, B13, B17, B20 | Class 3 (0.2W)  |

## **Chapter 5 – Setting up and Configuring the Device**

## **Install and Connect Conduit Hardware**

To install and cable the device:

- 1. Install a Mini SIM card.
- 2. Install a Micro SD card (optional).
- **3.** Install a battery (optional).
- 4. Connect the supplied antenna(s) to the appropriate connector(s) on the back of the device. Connectors may vary with model.
- 5. Use the Ethernet connector to connect the Conduit to the device used to administer the Conduit.
- 6. Install any mCard accessory cards into a slot at the back of the device. Refer to Installing an mCard Accessory Card for instructions.
- 7. Depending on the accessory card type, attach any antennas or cables for use with the card.
- 8. Connect the power cord to an outlet or power strip and to the power adapter.
- **9.** Connect the power adapter to the barrel jack on the back panel of the device. The Power LED comes on immediately after power is applied. Wait for the Status LED to begin blinking.

## **Installing a Mini SIM Card**

You need:

- Phillips screwdriver
- Mini SIM card (2FF form factor)

To install or replace the SIM card:

- **1.** Disconnect power to the Conduit, if it is connected.
- 2. At the front of the Conduit housing, remove the screw that secures the nameplate to the housing and remove the nameplate.
- **3.** Locate the SIM card holder in the upper right corner of the opening. If a SIM card is installed and needs to be removed, slide it out of the SIM card holder.
- 4. Gently push the new SIM card into SIM card holder face up with the cut corner to the right and the SIM contacts facing toward the Conduit's interior.
- 5. If not installing a battery or micro SD card, reattach the MultiTech nameplate to the Conduit using the screw removed in Step 2.



## **Accessory Port (mCard) Interfaces**

The accessory card interface on the Conduit base board has the following interface options:

| Interface                           | Description                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 12C                                 | Used by all accessory cards. I2C is required for<br>Electronic Identification (EID) support on the accessory<br>card but can be used for other I2C devices. It should<br>supports standard (100 kHz) and/or fast (400 kHz) clock<br>speeds.                                                                                                                                                  |  |
|                                     | The I2C interface reserves the full block of EEPROM<br>address space for Electronic ID support, so we<br>recommend that you not attach any other EEPROM<br>devices to the interface. We recommend that you use a<br>24C04 part, because both address bits of the 24C04 are<br>connected to the AP interface allowing you to identify<br>four separate accessory port (AP) cards in a system. |  |
| Serial UART                         | Serial UART with HW flow control used by Serial<br>interface based Accessory Cards                                                                                                                                                                                                                                                                                                           |  |
| SDIO interface and/or SPI Interface | AP1 has option for SDIO or SPI interface, based on what<br>Accessory Card is installed. AP2 supports only SPI based<br>Accessory Cards.                                                                                                                                                                                                                                                      |  |
| GPIO                                | Additional control pins for certain Accessory Cards.                                                                                                                                                                                                                                                                                                                                         |  |
| Interrupts                          | Software defined interrupts. Can also be used as additional control pins.                                                                                                                                                                                                                                                                                                                    |  |
| PPS                                 | GPS generated Pulse-Per-Second signal used for software timing. Default is 1 pulse/sec.                                                                                                                                                                                                                                                                                                      |  |
| USB 2.0                             | A standard USB 2.0 High Speed interface for USB based Accessory Cards.                                                                                                                                                                                                                                                                                                                       |  |
| 5 VDC 1 Amp supply                  | Used by all accessory cards.                                                                                                                                                                                                                                                                                                                                                                 |  |
| 3.3 VDC 1 Amp supply                | Used by all accessory cards.                                                                                                                                                                                                                                                                                                                                                                 |  |

For accessory card specifications, regulatory content, and installation information, refer to the appropriate product page: www.multitech.com/brands/multiconnect-mcard.

## Installing a Micro SD Card

You need:

- Phillips screwdriver
- MicroSD memory card

To install or replace the SD card:

- **1.** Disconnect power to the Conduit, if it is connected.
- 2. At the front of the Conduit, remove the screw that secures the MultiTech nameplate.
- 3. Locate the SD card at the left side of the opening on the underside of the PC board.
- 4. If an SD card is already installed, gently push on the card to release it from its setting and remove it from the housing with your fingers.
- 5. With the new SD card contacts facing up and toward the interior of the device, gently push the card into the slot to secure it.
- 6. Reattach the MultiTech nameplate to the housing using the screw removed in step 2.



### **Installing a Battery**

The battery is located in the Conduit housing.

You need:

- Phillips screwdriver
- If replacing a battery, non-metal tweezers or similar object
- CR1632 standard coin lithium battery

To install or replace the battery:

- **1.** If connected, disconnect power to the Conduit.
- 2. At the front of the Conduit housing, remove the screw that secures the MultiTech nameplate to the housing.

- **3.** The battery holder is located at the right side of the opening on the underside of the PC board. To remove an existing battery, use non-metal tweezers as necessary.
- 4. Orient the new battery so that the positive (+) pole is facing down. Use your fingers or non-metal tweezers to insert the battery into the holder.
- 5. Reattach the MultiTech nameplate to the housing using the screw removed in Step 2.



**CAUTION:** Risk of explosion if this battery is replaced by an incorrect type. Dispose of batteries according to instructions.

Note:

**ATTENTION:** Risque d'explosion si vous remplacez la batterie par un modèle incompatible. Jetez les piles usagées selon les instructions.

### **Connecting to the Debug Interface**

There are two different options for the debug connector: 1) USB Micro B connector or 2) 3-pin connector. Check which debug interface is in your device by using steps 1-3. Once you have the appropriate cable available, proceed with steps 4-7.

**NOTE:** If you have a 3-pin connector, you must build a cable specifically for your debug interface. See details on how to build the 3-pin cable following these instructions.

You need:

- Phillips screwdriver
- Standard USB Micro B cable
- **1.** Disconnect power to the Conduit, if it is connected.
- 2. At the front of the Conduit housing, remove the screw that secures the MultiTech nameplate to the housing.
- **3.** Locate and identify the USB debug cable connector in the center of the opening. Make sure have the appropriate cable available (if you have the 3-pin connector, see cable details below).
- 4. Connect the appropriate cable to the debug connector.
  - a. If you have the USB Micro B connector, connect the USB Micro B cable to the debug connector.



b. If you have the 3-pin connector, connect the 3-pin cable to the debug connector.



- 5. Connect the Type A end of the USB cable to the host.
- 6. From the host, use an application such as TeraTerm with a baud rate of 115,200. If the USB driver does not automatically install, do the following:
  - a. Unplug the USB cable.
  - **b.** Go to the following web site to download and install the appropriate USB driver: https://www.maxlinear.com/support/design-tools/software-drivers
  - c. Plug the USB cable back into the housing.
- 7. From the host, access the Conduit's USB COM port.

#### Accessory 3-pin Cable for Debug Interface

The 3-pin Debug Interface cable can be ordered as an accessory from the factory, P/N: 95218134LF, model: CA-MTCDT-DEBUG. Otherwise, you have the option to build it yourself. See details in the following section.

#### **Building the 3-pin Cable**

As an alternative to the accessory cable for the 3-pin debug connector, you can build a custom cable to use the debug interface. The resulting cable should have a USB-A connector for the host end and the 3-pin connector on the device end. See tables under the cable and connector information for specific parts and manufacturers that you can use.

You need:

- USB to 3.3V Serial UART cable
- JST-ZHR-3 connector (3-pin connector with crimp-style contacts )
- Custom crimping tool (for use with JST connector only)

- 1. Purchase a USB to 3.3V Serial UART cable with a USB-A connector for the host end and three leads on the device end. See cable information for details.
- 2. Purchase a 3-pin connector using crimp-style contacts for the device end of the cable. See connector information for details.
- 3. Cut the original connectors off the three leads of the device end of the cable.
- 4. Strip the insulation and crimp the terminals on the wire with a custom crimping tool.
- 5. Plug the terminals into the connector shell. Note: The terminals are very small.

#### **Cable Information**

| Description                                                    | Manufacturer | P/N or Product Number |
|----------------------------------------------------------------|--------------|-----------------------|
| Olinuxino Serial Console Cable (USB to 3.3V Serial UART cable) | Olimex LTD   | USB-SERIAL-F          |
| Debug Cable for Raspberry Pi (USB to 3.3V Serial UART cable)   | FTDI         | TTL-232R-RPi          |



#### **Cable Drawing**



#### **Connector Information**

| Description                                                     | Manufacturer | P/N or Product Number | Contacts      |
|-----------------------------------------------------------------|--------------|-----------------------|---------------|
| 3-pin connector with<br>crimp-style contacts<br>(female socket) | JST          | JST-ZHR-3             | SZH-002T-P0.5 |



### **Restoring User Defined Settings**

You need:

• A pin, paperclip, or similar thin object that can fit into the reset hole.

To restore user defined settings for an **mPower device**:

- **1.** Locate the hole in the panel labeled RESET. The reset button is recessed into the housing.
- 2. Use the pin to press in the button for between 3 to 29 seconds, then release the reset button.
  - If you do not press in the button long enough, the device will reset, but the user defined settings will not be restored.
  - If you hold it too long (30 seconds or longer), factory default settings will be restored.

Note: The RESET button is in the same location on all Conduit models.

### **Resetting the Device**

You need:

• A pin, paperclip, or similar thin object that can fit into the reset hole.

The following is the default condition for the RESET button on the Conduit. You can program a change to the behavior of the button if needed.

To reset the device:

- **1.** Find the hole in the front panel labeled RESET. The reset button is recessed into the case.
- 2. For mPower models: Use the pin to press the RESET button for less than 3 seconds, then release. The device reboots.

**For mLinux models**: Press and hold the RESET button for less than 5 seconds, then release. Holding it beyond 5 seconds resets an mLinux device to factory defaults.

**3.** The status LED will keep blinking normally for a couple of seconds until the unit resets. Then the status light will stay solid while the device reboots. Once finished, the status will resume blinking normally.

## **Powering Up the Device**

**CAUTION:** Use only the power cord provided with the device. Using any other power cord voids the warranty and can damage the device.

To power up the device:

**1.** Install the desired MultiTech accessory card or cards into the slots at the back of the device. Refer to the appropriate installation documentation for the accessory card.

**Note:** Some models already have MTAC cards installed.

- 2. Connect the power cord to an outlet or power strip and to the power adapter.
- **3.** Connect the power adapter to the barrel jack on the back panel of the device.
- 4. Verify power.
  - The Power LED comes on immediately after power is applied.
  - The device takes a short time to boot up when you apply power.
- 5. Connect the device to the controlling device through the Ethernet connector or the USB connector on the back panel.

## **Chapter 6 – Regulatory Information**

## **Conduit Regulatory Information**

For regulatory infomration please see http://www.multitech.net/developer/products/multiconnect-conduit-platform/conduit/conduit-regulatory-information/