
How to add Custom Decoders and Sensor

Definitions

Introduction

By default, the system supports MultiTech/Radio Bridge, ADEUNIS and ELSYS LoRaWAN sensors. The

sensor definitions, a sensor definition JSON file, and a sensor decoder file, are embedded into the firmware

and cannot be modified or deleted by the user.

The system also allows importing sensor definitions, which allows adding new sensors or importing a custom

sensor definition. This guide will instruct you on the process.

Requirement

• MultiTech Gateway with Payload Management License with mPower 6.3.2+

• LoRaWAN sensor with javascript decoder.

o A Conduit gateway with mPower OS v6.3.2 or higher that has been optimized to use the standard

of TTN JavaScript decoders. You can check out their sensor library here

https://github.com/TheThingsNetwork/lorawan-devices

Downloading Decoder from TTN Repository

If your sensor is included in the sensor repository you can download it from the TTN GitHub and use that

decoder to create a sensor definition file.

1. In the link above, navigate the repository to find your sensor manufacturer and model and download the

file.

2. MultiTech/Radio Bridge Sensor decoders are pre-installed on our devices, if you’d like to modify it,

they can be found here: lorawan-devices/vendor/radio-bridge/radio_bridge_packet_decoder.js at master

· TheThingsNetwork/lorawan-devices · GitHub

2024-04 • © 2024 Multi-Tech Systems, Inc. All rights reserved.

https://github.com/TheThingsNetwork/lorawan-devices
https://github.com/TheThingsNetwork/lorawan-devices/blob/master/vendor/radio-bridge/radio_bridge_packet_decoder.js
https://github.com/TheThingsNetwork/lorawan-devices/blob/master/vendor/radio-bridge/radio_bridge_packet_decoder.js
https://github.com/TheThingsNetwork/lorawan-devices
https://github.com/TheThingsNetwork/lorawan-devices/blob/master/vendor/radio-bridge/radio_bridge_packet_decoder.js

function decodeUplink(input) {

 try{

 var bytes = input.bytes;

 var data = {};

 const toBool = value => value == '1';

 var calculateTemperature = function (rawData){return

(rawData - 400) / 10};

 var calculateHumidity = function(rawData){return (rawData *

100) / 256};

 var decbin = function (number) {

 if (number < 0) {

 number = 0xFFFFFFFF + number + 1

 }

 number = number.toString(2);

 return "00000000".substr(number.length) + number;

 }

 function handleKeepalive(bytes, data){

 var tempHex = '0' + bytes[1].toString(16) +

bytes[2].toString(16);

 var tempDec = parseInt(tempHex, 16);

 var temperatureValue = calculateTemperature(tempDec);

 var humidityValue = calculateHumidity(bytes[3]);

 var batteryHex = '0' + bytes[4].toString(16) +

bytes[5].toString(16);

 var batteryVoltageCalculated = parseInt(batteryHex,

Create Sensor Definitions File

After downloading your JavaScript decoder either from the TTN repository or directly from the sensor

manufacturer, you will need to create a sensor definitions file. This is JSON file that defines all the data types

that the decoder reads from the sensor.

In this example, we are using the mClimate CO2 Display decoder we downloaded from the step above. See the

code snippet above.

Make note of the sections where the function returns ‘data.’ These are the specific data points that are added to

our sensor definitions file. Below is the JSON sensor definitions file created for the CO2 Display sensor above.

Sensor definitions require the following objects,

• “description”: A description of the sensor

• “properties”: a list of all the properties the sensor returns including their name, type, and units if

applicable.

• “decoder”: the name of the JavaScript decoder file.

A few things to note when creating the sensor definitions file.

• The name of the properties must match the spelling and case of the name in the decoder.

• Make sure the data type returned corresponds to the decoder file. For ex., if you list

“data.hardwareVersion” as a float, make sure that in the decoder that value is a number. You may

have to adjust your decoder.

• The decoder name must match the file name of the JavaScript decoder.

2024-04 • © 2024 Multi-Tech Systems, Inc. All rights reserved.

Below is a sample sensor definitions file for a Radio Bridge Temperature Sensor.

Upload Sensor Definitions Files

Now it's time to upload both files to the Gateway.

1. Navigate to Payload Management-->Sensor Definitions

2024-04 • © 2024 Multi-Tech Systems, Inc. All rights reserved.

2. Click Import tab

3. Enter the Manufacturer and Sensor Type

4. Choose the Sensor Definition and Sensor Decoder files from your machine.

5. Click Import

Troubleshooting Sensor Definitions & Decoders

From the UI

Error messages from the Payload Decoder can be found under Status & Logs → Payload Management under

the LoRaWAN Decoder.

Through SSH

For those with more programming experience, you can test the decoders directly on the operating system of the

gateway. Enable SSH through Administration → Access Configuration

SSH into the gateway. You can find custom decoder files in the /var/config/scada/sensors/ directory.

2024-04 • © 2024 Multi-Tech Systems, Inc. All rights reserved.

There you can run the following command below to test the decoder directly. We recommend testing before

uploading the decoder onto the device.

admin@mtcdt:~$ packet-decoder-cli \

 --js-uplink-decoder c02-didplay.js \

 --port 1 \

 --packet 0102A33E0BE01A00000000 \

 --stdout

2024-04 • © 2024 Multi-Tech Systems, Inc. All rights reserved.

